CCTA冠周脂肪联合冠状动脉斑块参数对急性冠状动脉综合征的预测价值分析

    Analysis of predictive value of CCTA pericoronal fat combined with coronary plaque parameters in acute coronary syndrome

    • 摘要:
      目的 基于冠状动脉计算机断层扫描血管造影(CCTA)冠周脂肪联合冠状动脉斑块参数对急性冠状动脉综合征(ACS)的诊断效能分析。
      方法 回顾性收集2019年1月至2020年3月有记录的ACS事件(急性心肌梗死或不稳定型心绞痛,有斑块破裂的客观证据)并在ACS事件前1个月至2年接受CCTA检查的病人。通过CCTA检查收集斑块参数和冠周脂肪特征冠周脂肪衰减指数(FAI)。采用信息增益评估每个特征的相对重要性,并采用受试者工作特征曲线评估单个或组合特征预测ACS的风险价值。
      结果 本研究纳入了59例病人,CCTA和ACS事件之间的中位间隔为341 d(IQR为166~544, 范围55~702),94.9%的病人出现急性心肌梗死。罪犯病变中低衰减斑块的患病率和FAI高于非罪犯病变(P<0.05和P<0.01)。FAI显示出最高的信息增益(0.051, 95%CI:0.050~0.052),其次是低衰减斑块(0.028, 95%CI:0.027~0.029)和斑块体积(0.023, 95%CI:0.022~0.024)。具有较高FAI和存在低衰减斑块的病变与后续ACS罪犯病变的风险较高相关(FAI和低衰减斑块风险比分别为HR=3.251, 95%CI:1.310~8.040, P<0.01和HR=2.601, 95%CI:1.356~4.945,P<0.05)。FAI、低衰减斑块和斑块体积的联合模型在预测ACS风险中表现出最佳性能(AUC=0.737, 95%CI:0.714~0.767,P<0.01)。
      结论 斑块参数和冠周脂肪特征的结合可以提高对非阻塞性冠状动脉病变病人ACS风险的无创预测。

       

      Abstract:
      Objective To conduct an analysis of the diagnostic efficacy of coronary computed tomography angiography (CCTA) combined with coronary plaque parameters in the diagnosis of acute coronary syndrome (ACS).
      Methods Patients who experienced a documented ACS event (acute myocardial infarction or unstable angina with objective evidence of plaque rupture) from January 2019 to March 2020 and had undergone CCTA from 1 month to 2 years before the ACS event were retrospectively collected.Plaque parameters and pericoronal fat characteristics pericoronal fat attenuation index (FAI) were collected by CCTA examination.Information gain was used to assess the relative importance of each feature, and receiver operating characteristic curves were used to assess the risk value of individual or combined features for predicting ACS.
      Results This study comprised 59 patients.The median interval between CCTA and ACS events was 341 days (IQR 166-544 and range 55-702), with acute myocardial infarction occurring in 94.9% of patients.The prevalence and FAI of low-attenuation plaques in culprit lesions were significantly higher than those in non-culprit lesions (P < 0.05 and P < 0.01).FAI showed the highest information gain (0.051, 95%CI: 0.050-0.052), followed by low attenuation plaques (0.028, 95%CI : 0.027-0.029) and plaque volume (0.023, 95%CI: 0.022-0.024).Lesions with higher FAI and the presence of low-attenuation plaque were associated with a higher risk of subsequent ACS culprit lesions (hazard ratio for FAI and low-attenuation plaque, respectively, HR=3.251, 95%CI: 1.310-8.040, P < 0.01 and HR=2.601, 95%CI: 1.356-4.945, P < 0.05).The model with FAI, low-attenuation plaque and plaque volume showed the best performance in predicting ACS risk (AUC=0.737, 95%CI: 0.714-0.767).
      Conclusions The combination of plaque parameters and pericoronal fat characteristics can improve noninvasive prediction of ACS risk in patients with non-obstructive coronary artery disease.

       

    /

    返回文章
    返回