Citation: | SHI Zong-fen, LU Xing-yue, ZHANG Pei, ZHAO Su-rong. Study on the effects of 3-bromopyruvate on the sensitivity of human nasopharyngeal carcinoma cells to cisplatin and its mechanism[J]. Journal of Bengbu Medical University, 2020, 45(9): 1147-1153. DOI: 10.13898/j.cnki.issn.1000-2200.2020.09.002 |
[1] |
TANG LL, CHEN WQ, XUE WQ, et al.Global trends in incidence and mortality of nasopharyngeal carcinoma[J].Cancer Letters, 2016, 374(1):22. doi: 10.1016/j.canlet.2016.01.040
|
[2] |
CHEN YP, CHAN ATC, LE QT, et al.Nasopharyngeal carcinoma[J].Lancet, 2019, 394(10192):64. doi: 10.1016/S0140-6736(19)30956-0
|
[3] |
LEE AW, MA BB, WT NG, et al.Management of nasopharyngeal carcinoma:current practice and future perspective[J].J Clin Oncol, 2015, 33(29):56. doi: 10.1200/jco.2015.60.9347
|
[4] |
LEEAW, TUNG SY, DT CHUA, et al.Randomized trial of radiotherapy plus concurrent-adjuvant chemotherapy vs radiotherapy alone for regionally advanced nasopharyngeal carcinoma[J].J Natl Cancer Inst, 2010, 102(15):88. https://www.ncbi.nlm.nih.gov/pubmed/20634482
|
[5] |
梁雷锋, 林展.复发鼻咽癌治疗的新进展[J].中国临床新医学, 2019, 12(3):342. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgyxwz-lnyxfc201903030
|
[6] |
NG WT, TUNG SY, LEE V, et al.Concurrent-adjuvant chemoradiation therapy for stage Ⅲ-IVB nasopharyngeal carcinoma-exploration for achieving optimal 10-year therapeutic ratio[J].Int J Radiat Oncol Biol Phys, 2018, 101(5):78. https://www.researchgate.net/publication/324916083_Concurrent-adjuvant_chemoradiotherapy_for_Stage_III-IVB_Nasopharyngeal_Carcinoma_-_exploration_for_achieving_optimal_10-year_therapeutic_ratio
|
[7] |
郭兴裕.糖酵解抑制剂对胃癌细胞MGC-803的影响及其机制研究[D].桂林: 广西医科大学, 2017.
|
[8] |
张海丽, 曾常茜, 郑学仿.3-溴丙酮酸对人肝癌HepG-2细胞增殖和凋亡的影响[J].广西医科大学学报, 2010, 27(2):183. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxykdx201002006
|
[9] |
YANG Y, ZHU G, DONG B, et al.The NQO1/PKLR axis promotes lymph node metastasis and breast cancer progression by modulating glycolytic reprogramming[J].Cancer Letters, 2019, 453:170. doi: 10.1016/j.canlet.2019.03.054
|
[10] |
邹雪.3-溴丙酮酸诱导鼻咽癌细胞死亡的作用及其机制[D].蚌埠: 蚌埠医学院, 2016.
|
[11] |
赵素容, 张媛媛, 吴成柱, 等.3-溴丙酮酸增强肝癌细胞对顺铂敏感性的作用[J].南方医科大学学报, 2014, 34(1):25. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dyjydxxb201401006
|
[12] |
李其响.3-溴丙酮酸对乳腺癌细胞的细胞毒性依赖于MCT1表达[D].蚌埠: 蚌埠医学院, 2018.
|
[13] |
SZCZUKA I, GAMIAN A, TERLECKI G.3-Bromopyruvate as a potential pharmaceutical in the light of experimental data[J].Postepy Hig Med Dosw, 2017, 71:88. http://europepmc.org/abstract/MED/29225201
|
[14] |
IHRLUND LS, HERNLUND E, KHAN O, et al.3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs[J].Mol Oncol, 2008, 2(1):94. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=32b1795647002eb7a0c8d49f90f8833f
|
[15] |
DEVORKIN L, PAVEY N, CARLETON G, et al.Autophagy regulation of metabolism is required for CD8(+) T cell anti-tumor immunity[J].Cell Rep, 2019, 27(2):502. http://www.sciencedirect.com/science/article/pii/S2211124719303535
|
[16] |
JAGUST P, LUXAN-DELGADO B DE, PAREJO-ALONSO B, et al.Metabolism-based therapeutic strategies targeting cancer stem cells[J].Front Pharmacol, 2019, 10:203. doi: 10.3389/fphar.2019.00203
|
[17] |
MARTINEZ-OUTSCHOOM UE, PESTELL RG, HOWELL A, et al.Energy transfer in "parasitic" cancer metabolism[J].Cell Cycle, 2011, 10(24):4208. doi: 10.4161/cc.10.24.18487
|
[18] |
WARD PS, THOMPSON CB.Metabolic reprogramming:acancer hallmark even warburg did not anticipate[J].Cancer Cell, 2012, 21(3):297. doi: 10.1016/j.ccr.2012.02.014
|
[19] |
LIU Y, FANG S, SUN Q, et al.Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress[J].Biochem Biophys Res Commun, 2016, 480(3):415. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=6256e0cf207e226c5eafa44b32ce9098
|
[20] |
ISHIGURO Y, KOBAYASHI M, IDENO M, et al.Valproate sensitizes human glioblastoma cells to 3-bromopyruvate-induced cytotoxicity[J].Int J Pharm, 2018, 551(1-2):97. doi: 10.1016/j.ijpharm.2018.08.039
|
[21] |
CHEN Y, WEI L, ZHANG X, et al.3-Bromopyruvate sensitizes human breast cancer cells to TRAIL-induced apoptosis via the phosphorylated AMPK-mediated upregulation of DR5[J].Oncol Rep, 2018, 40(5):2435. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2c0f523dc3f24da38796435aa9243db5
|
[22] |
ZOU X, ZHANG M, SUN Y, et al.Inhibitory effects of 3-bromopyruvate in human nasopharyngeal carcinoma cells[J].Oncol Rep, 2015, 34(4):1895. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cfcd3ad04ddef08214d08e028961aeba
|
[23] |
PULASKI L, JATCZAK-PAWLIK I, SOBALSKA-KWAPIS M, et al.3-Bromopyruvate induces expression of antioxidant genes[J].Free Radic Res, 2019, 53(2):170. doi: 10.1080/10715762.2018.1541176
|
[24] |
LIS P, DYLAG M, NIEDZWIECKA K, et al.The HK2 dependent "warburg effect" and mitochondrial oxidative phosphorylation in cancer:targets for effective therapy with 3-bromopyruvate[J].Molecules, 2016, 21(12):1730. doi: 10.3390/molecules21121730
|
[25] |
TRAN Q, LEE H, PARK J, et al.Targeting cancer metabolism-revisiting the warburg effects[J].Toxicol Res, 2016, 32(3):177. doi: 10.5487/TR.2016.32.3.177
|
[26] |
YADAV S, PANDEY SK, KUMAR A, et al.Antitumor and chemosensitizing action of 3-bromopyruvate:implication of deregulated metabolism[J].Chem Biol Interact, 2017, 270:73. doi: 10.1016/j.cbi.2017.04.015
|
[27] |
LEBELO MT, JOUBERT AM, VISAGIE MH.Warburg effect and its role in tumourigenesis[J].Arch Pharm Res, 2019, 42(10):833. doi: 10.1007/s12272-019-01185-2
|
[28] |
FAN T, SUN G, SUN X, et al.Tumor energy metabolism and potential of 3-bromopyruvate as an inhibitor of aerobic glycolysis:implications in tumor treatment[J].Cancers (Basel), 2019, 11(3):317. doi: 10.3390/cancers11030317
|
[29] |
STAGG J, SMYTH MJ.Extracellular adenosine triphosphate and adenosine in cancer[J].Oncogene, 2010, 29(39):5346. doi: 10.1038/onc.2010.292
|
[30] |
SCHENK RL, STRASSER A, DEWSON G.BCL-2:long and winding path from discovery to therapeutic target[J].Biochem Biophys Res Commun, 2017, 482(3):459. https://www.sciencedirect.com/science/article/pii/S0006291X16317867
|
[31] |
WENG JR, BAI LY, CHIU SJ, et al.Divaricoside exerts antitumor effects, in part, by modulating Mcl-1 in human oral squamous cell carcinoma cells[J].Comput Struct Biotechnol J, 2019, 17:151. doi: 10.1016/j.csbj.2019.01.004
|
[32] |
PENA-BLANCO A, GARCIA-SAEZ AJ.Bax, Bak and beyond-mitochondrial performance in apoptosis[J].The FEBS Journal, 2018, 285(3):416. doi: 10.1111/febs.14186
|