• 中国科技论文统计源期刊
  • 中国科技核心期刊
  • 中国高校优秀期刊
  • 安徽省优秀科技期刊
PENG Shijuan, WANG Xiaoman, GAO Qin, CHEN Houzao. The current state of research on cardiovascular disease prediction models based on artificial intelligence[J]. Journal of Bengbu Medical University, 2025, 50(1): 6-13. DOI: 10.13898/j.cnki.issn.2097-5252.2025.01.002
Citation: PENG Shijuan, WANG Xiaoman, GAO Qin, CHEN Houzao. The current state of research on cardiovascular disease prediction models based on artificial intelligence[J]. Journal of Bengbu Medical University, 2025, 50(1): 6-13. DOI: 10.13898/j.cnki.issn.2097-5252.2025.01.002

The current state of research on cardiovascular disease prediction models based on artificial intelligence

More Information
  • Received Date: December 29, 2024
  • Revised Date: January 09, 2025
  • Cardiovascular diseases (CVD) are the leading cause of death worldwide, and early prediction is crucial for CVD prevention, diagnosis, and treatment. At the end of the twentieth century, researchers combined multiple risk factors into risk scores according to different weights to predict CVD risk, so as to identify the population most likely to benefit from preventive interventions, bringing significant benefits to some countries. However, traditional risk models usually fail to capture the non-linear relationships between risk factors. Artificial intelligence (AI) technologies, especially supervised machine learning and deep learning, provide new perspectives and tools for CVD prediction. In recent years, the risk of CVD morbidity and death can be accurately predicted based on clinical data such as electronic medical records and multimodal imaging, as well as big data on aging. Therefore, this paper will elaborate on the research status of traditional scoring, CVD prediction models based on AI clinical data and big data on aging respectively, so as to provide ideas for promoting the combination of AI and CVD.

  • [1]
    REHMAN S,REHMAN E,IKRAM M,et al. Cardiovascular disease (CVD):assessment,prediction and policy implications[J]. Bmc Public Health,2021,21(1):1299. doi: 10.1186/s12889-021-11334-2
    [2]
    DESIDERIO A,PASTORINO M,CAMPITELLI M,et al. DNA methylation in cardiovascular disease and heart failure:novel prediction models?[J]. Clinical Epigenetics,2024,16(1):115. doi: 10.1186/s13148-024-01722-x
    [3]
    KHALTAEV N,AXELROD S. Countrywide cardiovascular disease prevention and control in 49 countries with different socio-economic status[J]. Chronic Dis Transl Med,2022,8(4):296.
    [4]
    BATTINENI G,SAGARO GG,CHINTALAPUDI N,et al. The benefits of telemedicine in personalized prevention of cardiovascular diseases (CVD):a systematic review[J]. J Pers Med,2021,11(7):658. doi: 10.3390/jpm11070658
    [5]
    MASOUDKABIR F,MOHAMMADIFARD N,MANI A,et al. Shared Lifestyle-Related Risk Factors of Cardiovascular Disease and Cancer:Evidence for Joint Prevention[J]. ScientificWorldJournal,2023,2023:2404806.
    [6]
    GEROSKI T,JAKOVLJEVIC D,FILIPOVIC N. Big Data in multiscale modelling:from medical image processing to personalized models[J]. J Big Data-Ger,2023,10(1):72. doi: 10.1186/s40537-023-00763-y
    [7]
    ARNETT DK,BLUMENTHAL RS,ALBERT MA,et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease:a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines[J]. Circulation,2019,140(11):e596.
    [8]
    OPOKU S,GAN Y,YOBO EA,et al. Awareness,treatment,control,and determinants of dyslipidemia among adults in China[J]. Sci Rep-Uk,2021,11(1):10056. doi: 10.1038/s41598-021-89401-2
    [9]
    PATEL R S,TRAGANTE V,SCHMIDT AF,et al. Subsequent event risk in individuals with established coronary heart disease design and rationale of the GENIUS-CHD Consortium[J]. Circ-Genom Precis Me,2019,12(4):e002470. doi: 10.1161/CIRCGEN.119.002470
    [10]
    WILSON P W,D'AGOSTINO R B,LEVY D,et al. Prediction of coronary heart disease using risk factor categories[J]. Circulation,1998,97(18):1837. doi: 10.1161/01.CIR.97.18.1837
    [11]
    GOFF DC,LLOYD-JONES DM,BENNETT G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk:a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines[J]. Circulation,2014,129(25 Suppl 2):S49.
    [12]
    CONROY RM,PYÖRÄLÄ K,FITZGERALD AP,et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe:the SCORE project[J]. Eur Heart J,2003,24(11):987. doi: 10.1016/S0195-668X(03)00114-3
    [13]
    HIPPISLEY-COX J,COUPLAND C,VINOGRADOVA Y,et al. Derivation and validation of QRISK,a new cardiovascular disease risk score for the United Kingdom:prospective open cohort study[J]. BMJ,2007,335(7611):136. doi: 10.1136/bmj.39261.471806.55
    [14]
    PAIXAO ARM,AYERS CR,ROHATGI A,et al. Cardiovascular lifetime risk predicts incidence of coronary calcification in individuals with low short-term risk:the Dallas Heart Study[J]. J Am Heart Assoc,2014,3(6):e001280. doi: 10.1161/JAHA.114.001280
    [15]
    SHAMEER K,JOHNSON KW,GLICKSBERG BS,et al. Machine learning in cardiovascular medicine:are we there yet?[J]. Heart,2018,104(14):1156. doi: 10.1136/heartjnl-2017-311198
    [16]
    SENGUPTA PP,SHRESTHA S. Machine learning for data-driven discovery:the rise and relevance[J]. Jacc-Cardiovasc Imag,2019,12(4):690. doi: 10.1016/j.jcmg.2018.06.030
    [17]
    HAMCZYK MR,DEL CAMPO L,ANDRÉS V. Aging in the cardiovascular system:lessons from hutchinson-gilford progeria syndrome[J]. Annu Rev Physiol,2018,80:27. doi: 10.1146/annurev-physiol-021317-121454
    [18]
    LIMA EM,RIBEIRO AH,PAIXAO GMM,et al. Deep neural network-estimated electrocardiographic age as a mortality predictor[J]. Nat Commun,2021,12(1):5117. doi: 10.1038/s41467-021-25351-7
    [19]
    HAMCZYK MR,NEVADO RM,BARETTINO A,et al. Biological versus chronological aging:JACC focus seminar[J]. J Am Coll Cardiol,2020,75(8):919. doi: 10.1016/j.jacc.2019.11.062
    [20]
    KUCHARSKA-NEWTON AM,STONER L,MEYER ML. Determinants of vascular age:an epidemiological perspective[J]. Clin Chem,2019,65(1):108. doi: 10.1373/clinchem.2018.287623
    [21]
    GROENEWEGEN K A,DEN RUIJTER H M,PASTERKAMP G,et al. Vascular age to determine cardiovascular disease risk:A systematic review of its concepts,definitions,and clinical applications[J]. Eur J Prev Cardiol,2016,23(3):264. doi: 10.1177/2047487314566999
    [22]
    ANSARI MY,QARAQE M,CHARAFEDDINE F,et al. Estimating age and gender from electrocardiogram signals:A comprehensive review of the past decade[J]. Artif Intell Med,2023,146:102690. doi: 10.1016/j.artmed.2023.102690
    [23]
    CHANG CH,LIN CS,LUO YS,et al. Electrocardiogram-based heart age estimation by a deep learning model provides more information on the incidence of cardiovascular disorders[J]. Front Cardiovasc Med,2022,9:754909. doi: 10.3389/fcvm.2022.754909
    [24]
    VAN DER WALL HEC,HASSING GJ,DOLL RJ,et al. Cardiac age detected by machine learning applied to the surface ECG of healthy subjects:creation of a benchmark[J]. J Electrocardiol,2022,72:49. doi: 10.1016/j.jelectrocard.2022.03.001
    [25]
    FONG S,PABIS K,LATUMALEA D,et al. Principal component-based clinical aging clocks identify signatures of healthy aging and targets for clinical intervention[J]. Nature Aging,2024,4(8):1137. doi: 10.1038/s43587-024-00646-8
    [26]
    MCGOVERN PG,PANKOW JS,SHAHAR E, et al. Recent trends in acute coronary heart disease–mortality,morbidity,medical care,and risk factors. The minnesota heart survey investigators[J]. N Engl J Med,1996,334(14):884.
    [27]
    SCORE2 working group and ESC Cardiovascular risk collaboration. SCORE2 risk prediction algorithms:new models to estimate 10-year risk of cardiovascular disease in Europe[J]. Eur Heart J,2021,42(25):2439. doi: 10.1093/eurheartj/ehab309
    [28]
    DE VRIES TI ,COONEY MT ,SELMER RM , et al. SCORE2-OP risk prediction algorithms:estimating incident cardiovascular event risk in older persons in four geographical risk regions[J]. Eur Heart J,2021;42(25):2455.
    [29]
    VICTORA CG,VAUGHAN JP,BARROS FC,et al. Explaining trends in inequities:evidence from Brazilian child health studies[J]. Lancet,2000,356(9235):1093. doi: 10.1016/S0140-6736(00)02741-0
    [30]
    RANGANATHAN M,BHOPAL R. Exclusion and inclusion of nonwhite ethnic minority groups in 72 North American and European cardiovascular cohort studies[J]. PLoS Med,2006,3(3):e44. doi: 10.1371/journal.pmed.0030044
    [31]
    HIPPISLEY-COX J,COUPLAND C,VINOGRADOVA Y,et al. Predicting cardiovascular risk in England and Wales:prospective derivation and validation of QRISK2[J]. BMJ,2008,336(7659):1475. doi: 10.1136/bmj.39609.449676.25
    [32]
    HIPPISLEY-COX J,COUPLAND C,BRINDLE P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease:prospective cohort study[J]. BMJ,2017,357:j2099.
    [33]
    LIU F,LI J,CHEN J,et al. Predicting lifetime risk for developing atherosclerotic cardiovascular disease in Chinese population:the China-PAR project[J]. Sci Bull,2018,63(12):779. doi: 10.1016/j.scib.2018.05.020
    [34]
    VAN DAALEN K R,ZHANG D,KAPTOGE S,et al. Risk estimation for the primary prevention of cardiovascular disease:considerations for appropriate risk prediction model selection[J]. Lancet Glob Health,2024,12(8):e1343. doi: 10.1016/S2214-109X(24)00210-9
    [35]
    QUER G,ARNAOUT R,HENNE M,et al. Machine learning and the future of cardiovascular care:JACC state-of-the-art review[J]. J Am Coll Cardiol,2021,77(3):300. doi: 10.1016/j.jacc.2020.11.030
    [36]
    NARULA S,SHAMEER K,SALEM OMAR A M,et al. Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography[J]. J Am Coll Cardiol,2016,68(21):2287. doi: 10.1016/j.jacc.2016.08.062
    [37]
    KAGIYAMA N,SHRESTHA S,FARJO P D,et al. Artificial Intelligence:practical primer for clinical research in cardiovascular disease[J]. J Am Heart Assoc,2019,8(17):e012788. doi: 10.1161/JAHA.119.012788
    [38]
    ALAA A M,BOLTON T,DI ANGELANTONIO E,et al. Cardiovascular disease risk prediction using automated machine learning:a prospective study of 423,604 UK Biobank participants[J]. PLoS One,2019,14(5):e0213653. doi: 10.1371/journal.pone.0213653
    [39]
    ZHOU H,YANG C,LI J,et al. Association of N-terminal pro-B natriuretic peptide with all-cause mortality and cardiovascular mortality in obese and non-obese populations and the development of a machine learning prediction model:National Health and Nutrition Examination Survey (NHANES) 1999—2004[J]. Diabetes Obes Metab,2024,26(12):5609. doi: 10.1111/dom.15927
    [40]
    ALI M M,PAUL B K,AHMED K,et al. Heart disease prediction using supervised machine learning algorithms:performance analysis and comparison[J]. Comput Biol Med,2021,136:104672. doi: 10.1016/j.compbiomed.2021.104672
    [41]
    AHMAD G N,FATIMA H,ULLAH S,et al. Efficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCV[J]. Ieee Access,2022,10:80151. doi: 10.1109/ACCESS.2022.3165792
    [42]
    YE C,FU T,HAO S,et al. Prediction of incident hypertension within the next year:prospective study using statewide electronic health records and machine learning[J]. J Med Internet Res,2018,20(1):e22. doi: 10.2196/jmir.9268
    [43]
    DUTTA A,BATABYAL T,BASU M,et al. An efficient convolutional neural network for coronary heart disease prediction[J]. Expert Syst Appl,2020,159:113408. doi: 10.1016/j.eswa.2020.113408
    [44]
    BEUNZA JJ,PUERTAS E,GARCIA-OVEJERO E,et al. Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease)[J]. Ieee J Biomed Health,2019,97:103257.
    [45]
    DU Z,YANG Y,ZHENG J,et al. Accurate Prediction of coronary heart disease for patients with hypertension from electronic health records with big data and machine-learning methods:Model development and performance evaluation[J]. Jmir Med Inf,2020,8(7):e17257. doi: 10.2196/17257
    [46]
    HILL NR,AYOUBKHANI D,MCEWAN P,et al. Predicting atrial fibrillation in primary care using machine learning[J]. PLoS One,2019,14(11):e0224582. doi: 10.1371/journal.pone.0224582
    [47]
    SEGAR MW,JAEGER BC,PATEL K,et al. Development and validation of machine learning-based race-specific models to predict 10-year risk of heart failure a multicohort analysis[J]. Circulation,2021,143(24):2370. doi: 10.1161/CIRCULATIONAHA.120.053134
    [48]
    COMMANDEUR F,SLOMKA PJ,GOELLER M,et al. Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk,coronary calcium,and epicardial adipose tissue:a prospective study[J]. Cardiovasc Res,2020,116(14):2216. doi: 10.1093/cvr/cvz321
    [49]
    VELUSAMY D,RAMASAMY K. Ensemble of heterogeneous classifiers for diagnosis and prediction of coronary artery disease with reduced feature subset[J]. Comput Meth Prog Bio,2021,198:105770. doi: 10.1016/j.cmpb.2020.105770
    [50]
    HONG C,PENCINA MJ,WOJDYLA DM,et al. Predictive accuracy of stroke risk prediction models across black and white race,sex,and age groups[J]. JAMA,2023,329(4):306. doi: 10.1001/jama.2022.24683
    [51]
    AZIZ F,MALEK S,IBRAHIM K S,et al. Short- and long-term mortality prediction after an acute ST-elevation myocardial infarction (STEMI) in Asians:a machine learning approach[J]. PLoS One,2021,16(8):e0254894. doi: 10.1371/journal.pone.0254894
    [52]
    MA CY,LUO YM,ZHANG TY,et al. Predicting coronary heart disease in Chinese diabetics using machine learning[J]. Comput Biol Med,2024,169:107952. doi: 10.1016/j.compbiomed.2024.107952
    [53]
    FLORES AM,SCHULER A,EBERHARD AV,et al. Unsupervised learning for automated detection of coronary artery disease subgroups[J]. J Am Heart Assoc,2021,10(23):e021976. doi: 10.1161/JAHA.121.021976
    [54]
    FRIZZELL JD,LIANG L,SCHULTE PJ,et al. Prediction of 30-day all-cause readmissions in patients hospitalized for heart failure:comparison of machine learning and other statistical approaches[J]. Jama Cardiol,2017,2(2):204. doi: 10.1001/jamacardio.2016.3956
    [55]
    PICKHARDT PJ,CORREALE L,HASSAN C. AI-based opportunistic CT screening of incidental cardiovascular disease,osteoporosis,and sarcopenia:cost-effectiveness analysis[J]. Abdom Radiol,2023,48(3):1181.
    [56]
    MAJHI B,KASHYAP A. Explainable AI-driven machine learning for heart disease detection using ECG signal[J]. Appl Soft Comput,2024,167:112225. doi: 10.1016/j.asoc.2024.112225
    [57]
    AHMED AAA,ALI W,ABDULLAH TAA,et al. Classifying cardiac arrhythmia from ECG signal using 1D CNN deep learning model[J]. Mathematics,2023,11(3):562. doi: 10.3390/math11030562
    [58]
    SINAM SA,MAJUMDER S. Short unsegmented PCG classification based on ensemble classifier[J]. Turk J Electr Eng Co,2020,28(2):875. doi: 10.3906/elk-1905-165
    [59]
    BEN HAMZA MFA,SJARIF NNA. A comprehensive overview of heart sound analysis using machine learning methods[J]. Ieee Access,2024,12:117203. doi: 10.1109/ACCESS.2024.3432309
    [60]
    BALAKRISHNAN C,AMBETH KUMAR VD. IoT-enabled classification of echocardiogram images for cardiovascular disease risk prediction with pre-trained recurrent convolutional neural networks[J]. Diagnostics,2023,13(4):775. doi: 10.3390/diagnostics13040775
    [61]
    VESAL S,GU M,MAIER A,et al. Spatio-temporal multi-task learning for cardiac mri left ventricle quantification[J]. Ieee J Biomed Health,2021,25(7):2698. doi: 10.1109/JBHI.2020.3046449
    [62]
    KHADEMI S,HEIDARIAN S,AFSHAR P,et al. Robust framework for COVID-19 identication from a multicenter dataset of chest CT scans[J]. PLoS One,2023,18(3):e0282121. doi: 10.1371/journal.pone.0282121
    [63]
    GUO BJ,HE X,LEI Y,et al. Automated left ventricular myocardium segmentation using 3D deeply supervised attention U-net for coronary computed tomography angiography; CT myocardium segmentation[J]. Med Phys,2020,47(4):1775. doi: 10.1002/mp.14066
    [64]
    WAGNER SK,FU DJ,FAES L,et al. Insights into systemic disease through retinal imaging-based oculomics[J]. Transl Vis Sci Techn,2020,9(2):6. doi: 10.1167/tvst.9.2.6
    [65]
    RIM TH,LEE CJ,THAM YC,et al. Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal photographs[J]. Lancet Digit. Health,2021,3(5):E306. doi: 10.1016/S2589-7500(21)00043-1
    [66]
    TSENG RMWW,RIM TH,SHANTSILA E,et al. Validation of a deep-learning-based retinal biomarker (Reti-CVD) in the prediction of cardiovascular disease:data from UK Biobank[J]. Bmc Med,2023,21(1):28. doi: 10.1186/s12916-022-02684-8
    [67]
    HUI L. Quantitative evaluation of the role of aging and non-aging factors for predicting threats from major chronic diseases and developing control strategies[J]. Heliyon,2024,10(14):e34224. doi: 10.1016/j.heliyon.2024.e34224
    [68]
    KUMAR M,YAN P,KUCHEL G A,et al. Cellular senescence as a targetable risk factor for cardiovascular diseases:therapeutic implications:JACC family series[J]. Jacc-Basic Transl Sc,2024,9(4):522.
    [69]
    NAKAMURA E,MIYAO K. A method for identifying biomarkers of aging and constructing an index of biological age in humans[J]. J Gerontol A Biol Sci Med Sci,2007,62(10):1096. doi: 10.1093/gerona/62.10.1096
    [70]
    RUTLEDGE J,OH H,WYSS-CORAY T. Measuring biological age using omics data[J]. Nat Rev Genet,2022,23(12):715. doi: 10.1038/s41576-022-00511-7
    [71]
    HORVATH S. DNA methylation age of human tissues and cell types[J]. Genome Biol,2013,14(10):R115.
    [72]
    LEVINE ME,LU AT,QUACH A,et al. An epigenetic biomarker of aging for lifespan and healthspan[J]. Aging,2018,10(4):573. doi: 10.18632/aging.101414
    [73]
    LU AT,QUACH A,WILSON JG,et al. DNA methylation GrimAge strongly predicts lifespan and healthspan[J]. Aging,2019,11(2):303. doi: 10.18632/aging.101684
    [74]
    BAEK YS,LEE DH,JO Y,et al. Artificial intelligence-estimated biological heart age using a 12-lead electrocardiogram predicts mortality and cardiovascular outcomes[J]. Front Cardiovasc Med,2023,10:1137892. doi: 10.3389/fcvm.2023.1137892
    [75]
    MEENAKSHI-SIDDHARTHAN DV,LIVIA C,PETERSON TE,et al. Artificial intelligence-derived electrocardiogram assessment of cardiac age and molecular markers of senescence in heart failure[J]. Mayo Clin Proc,2023,98(3):372. doi: 10.1016/j.mayocp.2022.10.026
    [76]
    KANG M,SHIN S,ZHANG G,et al. Mental Stress classification based on a support vector machine and naive bayes using electrocardiogram signals[J]. Sensors-Basel,2021,21(23):7916. doi: 10.3390/s21237916
    [77]
    BIN HEYAT MB,AKHTAR F,ABBAS SJ,et al. Wearable flexible electronics based cardiac electrode for researcher mental stress detection system using machine learning models on single lead electrocardiogram signal[J]. Biosensors,2022,12(6):427. doi: 10.3390/bios12060427
    [78]
    VERWEIJ N,BENJAMINS JW,MORLEY MP,et al. The genetic makeup of the electrocardiogram[J]. Cell Syst,2020,11(3):229. doi: 10.1016/j.cels.2020.08.005
    [79]
    MITCHELL GF,RONG J,LARSON MG,et al. Vascular age assessed from an uncalibrated,noninvasive pressure waveform by using a deep learning approach:the AI-vascularage model[J]. Hypertension,2024,81(1):193. doi: 10.1161/HYPERTENSIONAHA.123.21638
    [80]
    CAPPOZZO A,MCCRORY C,ROBINSON O,et al. A blood DNA methylation biomarker for predicting short-term risk of cardiovascular events[J]. Clin Epigenetics,2022,14(1):121. doi: 10.1186/s13148-022-01341-4
    [81]
    GIDLOW CJ,ELLIS NJ,COWAP L,et al. Cardiovascular disease risk communication in NHS Health Checks using QRISK®2 and JBS3 risk calculators:the RICO qualitative and quantitative study[J]. Health Technol Asses,2021,25(50):1. doi: 10.3310/hta25500
    [82]
    ABRIGNANI MG,LUCA F,ABRIGNANI V,et al. A look at primary and secondary prevention in the elderly:the two sides of the same coin[J]. J Clin Med,2024,13(15):4350. doi: 10.3390/jcm13154350
    [83]
    WEI Z,MA H,FANG EF,et al. Editorial:cellular senescence and cellular communications within tissue microenvironments during aging[J]. Front Physiol,2022,13:890577. doi: 10.3389/fphys.2022.890577
    [84]
    BUNNE C,ROOHANI Y,ROSEN Y, et al. How to build the virtual cell with artificial intelligence:priorities and opportunities[J]. ArXiv,2024:arXiv:2409.11654v2.

Catalog

    Article views (23) PDF downloads (5) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return